

News

Trend of Most Cited Papers (2001–2002) in *ARS*

AMONG THE MANY PARAMETERS that could define the quality of a journal, the frequency of citation of journal articles in the indexed literature is one measure that is widely recognized. As a new journal, *ARS* does not yet have an impact factor (as measured by Thomson ISI, Philadelphia, PA) but expects to have its first in 2004. The trend shows definite signs of a strong start. There seems to be a direct relationship between the perceived quality of a journal and the average quality of papers submitted to it. As such, submission of quality papers to a new journal without an impact factor reflects immense trust of the authors on the potential of the journal. As of August 1, 2003, *ARS* is pleased to recognize that the following papers have received above-average citation scores compared to all papers published in *ARS* during 2001 and 2002:

Most cited articles (top ~15%): 1, 5, 6, 8, 10–15, 17–19, 24, 29, 35–37, 40, 41, 43–46, 54, 57, 58, 61, 67, 68, 70, 71.

Highly cited articles (next ~25%): 2–4, 7, 9, 16, 20–23, 25–28, 30–34, 38, 39, 42, 47–53, 55, 56, 59, 60, 62–66, 69, 72–74.

REFERENCES

1. Alayash AI, Patel RP, and Cashon RE. Redox reactions of hemoglobin and myoglobin: biological and toxicological implications. *Antioxid Redox Signal* 3: 313–327, 2001.
2. Aronis A, Komarnitsky R, Shilo S, and Tirosh O. Membrane depolarization of isolated rat liver mitochondria attenuates permeability transition pore opening and oxidant production. *Antioxid Redox Signal* 4: 647–654, 2002.
3. Bajt ML, Ho YS, Vonderfecht SL, and Jaeschke H. Reactive oxygen as modulator of TNF and fas receptor-mediated apoptosis *in vivo*: studies with glutathione peroxidase-deficient mice. *Antioxid Redox Signal* 4: 733–740, 2002.
4. Bauer M and Bauer I. Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. *Antioxid Redox Signal* 4: 749–758, 2002.
5. Bhat KPL, Kosmeder JW, 2nd, and Pezzuto JM. Biological effects of resveratrol. *Antioxid Redox Signal* 3: 1041–1064, 2001.
6. Bors W, Foo LY, Hertkorn N, Michel C, and Stettmaier K. Chemical studies of proanthocyanidins and hydrolyzable tannins. *Antioxid Redox Signal* 3: 995–1008, 2001.
7. Bourdon E and Blache D. The importance of proteins in defense against oxidation. *Antioxid Redox Signal* 3: 293–311, 2001.
8. Briggs WR, Christie JM, and Salomon M. Phototropins: a new family of flavin-binding blue light receptors in plants. *Antioxid Redox Signal* 3: 775–788, 2001.
9. Choi AM and Otterbein LE. Emerging role of carbon monoxide in physiologic and pathophysiologic states. *Antioxid Redox Signal* 4: 227–228, 2002.
10. Clement MV, Ramalingam J, Long LH, and Halliwell B. The *in vitro* cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide. *Antioxid Redox Signal* 3: 157–163, 2001.
11. De Nigris F, Lerman LO, Condorelli M, Lerman A, and Napoli C. Oxidation-sensitive transcription factors and molecular mechanisms in the arterial wall. *Antioxid Redox Signal* 3: 1119–1130, 2001.
12. Deprez S, Mila I, Huneau JF, Tome D, and Scalbert A. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. *Antioxid Redox Signal* 3: 957–967, 2001.
13. Dulak J, Jozkowicz A, Foresti R, Kasza A, Frick M, Huk I, Green CJ, Pachinger O, Weidinger F, and Motterlini R. Heme oxygenase activity modulates vascular endothelial growth factor synthesis in vascular smooth muscle cells. *Antioxid Redox Signal* 4: 229–240, 2002.
14. Giedroc DP, Chen X, and Apuy JL. Metal response element (MRE)-binding transcription factor-1 (MTF-1): structure, function, and regulation. *Antioxid Redox Signal* 3: 577–596, 2001.
15. Gong P, Stewart D, Hu B, Li N, Cook J, Nel A, and Alam J. Activation of the mouse heme oxygenase-1 gene by 15-deoxy- $\Delta^{12,14}$ -prostaglandin J₂ is mediated by the stress response elements and transcription factor Nrf2. *Antioxid Redox Signal* 4: 249–257, 2002.
16. Haddad JJ and Land SC. Redox signaling-mediated regulation of lipopolysaccharide-induced proinflammatory cytokine biosynthesis in alveolar epithelial cells. *Antioxid Redox Signal* 4: 179–193, 2002.
17. Hainaut P and Mann K. Zinc binding and redox control of p53 structure and function. *Antioxid Redox Signal* 3: 611–623, 2001.
18. Hartsfield CL. Cross talk between carbon monoxide and nitric oxide. *Antioxid Redox Signal* 4: 301–307, 2002.
19. Hartwig A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. *Antioxid Redox Signal* 3: 625–634, 2001.
20. Hattori R, Hernandez TE, Zhu L, Maulik N, Otani H, Kaneda Y, and Das DK. An essential role of the antioxidant

gene Bcl-2 in myocardial adaptation to ischemia: an insight with antisense Bcl-2 therapy. *Antioxid Redox Signal* 3: 403–413, 2001.

21. Heck DE. •NO, RSNO, ONOO[−], NO⁺, •NOO, NOx—dynamic regulation of oxidant scavenging, nitric oxide stores, and cyclic GMP-independent cell signaling. *Antioxid Redox Signal* 3: 249–260, 2001.

22. Hingtgen SD and Davisson RL. Gene therapeutic approaches to oxidative stress-induced cardiac disease: principles, progress, and prospects. *Antioxid Redox Signal* 3: 433–449, 2001.

23. Huang TJ, McCoubrey WK, Jr, and Maines MD. Heme oxygenase-2 interaction with metalloporphyrins: function of heme regulatory motifs. *Antioxid Redox Signal* 3: 685–696, 2001.

24. Jozkowicz A, Huk I, Nigisch A, Weigel G, Weidinger F, and Dulak J. Effect of prostaglandin-J₂ on VEGF synthesis depends on the induction of heme oxygenase-1. *Antioxid Redox Signal* 4: 577–585, 2002.

25. Kagan VE, Kozlov AV, Tyurina YY, Shvedova AA, and Yalowich JC. Antioxidant mechanisms of nitric oxide against iron-catalyzed oxidative stress in cells. *Antioxid Redox Signal* 3: 189–202, 2001.

26. Karlsson A and Dahlgren C. Assembly and activation of the neutrophil NADPH oxidase in granule membranes. *Antioxid Redox Signal* 4: 49–60, 2002.

27. Kasahara T, Koguchi E, Funakoshi M, Aizu-Yokota E, and Sonoda Y. Antia apoptotic action of focal adhesion kinase (FAK) against ionizing radiation. *Antioxid Redox Signal* 4: 491–499, 2002.

28. Kelley MR and Parsons SH. Redox regulation of the DNA repair function of the human AP endonuclease Ape1/ref-1. *Antioxid Redox Signal* 3: 671–683, 2001.

29. Kilmartin PA. Electrochemical detection of natural antioxidants: principles and protocols. *Antioxid Redox Signal* 3: 941–955, 2001.

30. Kim KH, Rodriguez AM, Carrico PM, and Melendez JA. Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase. *Antioxid Redox Signal* 3: 361–373, 2001.

31. Koehler RC and Traystman RJ. Cerebrovascular effects of carbon monoxide. *Antioxid Redox Signal* 4: 279–290, 2002.

32. Kourembanas S. Hypoxia and carbon monoxide in the vasculature. *Antioxid Redox Signal* 4: 291–299, 2002.

33. Kumar D, Kirshenbaum LA, Li T, Danelisen I, and Singal PK. Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. *Antioxid Redox Signal* 3: 135–145, 2001.

34. Laskin JD, Heck DE, Gardner CR, and Laskin DL. Prooxidant and antioxidant functions of nitric oxide in liver toxicity. *Antioxid Redox Signal* 3: 261–271, 2001.

35. Lemasters JJ, Qian T, He L, Kim JS, Elmore SP, Cascio WE, and Brenner DA. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. *Antioxid Redox Signal* 4: 769–781, 2002.

36. Levonen AL, Patel RP, Brookes P, Go YM, Jo H, Parthasarathy S, Anderson PG, and Darley-Usmar VM. Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases. *Antioxid Redox Signal* 3: 215–229, 2001.

37. Li Q, Sanlioglu S, Li S, Ritchie T, Oberley L, and Engelhardt JF. GPx-1 gene delivery modulates NFκB activation following diverse environmental injuries through a specific subunit of the IKK complex. *Antioxid Redox Signal* 3: 415–432, 2001.

38. Maatta K, Kamal-Eldin A, and Torronen R. Phenolic compounds in berries of black, red, green, and white currants (*Ribes* sp.). *Antioxid Redox Signal* 3: 981–993, 2001.

39. Makmura L, Hamann M, Areopagita A, Furuta S, Munoz A, and Momand J. Development of a sensitive assay to detect reversibly oxidized protein cysteine sulphydryl groups. *Antioxid Redox Signal* 3: 1105–1118, 2001.

40. McKenzie RC, Arthur JR, and Beckett GJ. Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects. *Antioxid Redox Signal* 4: 339–351, 2002.

41. Motterlini R, Green CJ, and Foresti R. Regulation of heme oxygenase-1 by redox signals involving nitric oxide. *Antioxid Redox Signal* 4: 615–624, 2002.

42. Nakashima I, Kato M, Akhand AA, Suzuki H, Takeda K, Hossain K, and Kawamoto Y. Redox-linked signal transduction pathways for protein tyrosine kinase activation. *Antioxid Redox Signal* 4: 517–531, 2002.

43. Oberley LW. Anticancer therapy by overexpression of superoxide dismutase. *Antioxid Redox Signal* 3: 461–472, 2001.

44. Owen RT and Flotte TR. Approaches and limitations to gene therapy for mitochondrial diseases. *Antioxid Redox Signal* 3: 451–460, 2001.

45. Pataki T, Bak I, Csonka C, Kovacs P, Varga E, Blasig IE, and Tosaki A. Regulation of ventricular fibrillation by heme oxygenase in ischemic/reperfused hearts. *Antioxid Redox Signal* 3: 125–134, 2001.

46. Perez-Sala D and Lamas S. Regulation of cyclooxygenase-2 expression by nitric oxide in cells. *Antioxid Redox Signal* 3: 231–248, 2001.

47. Piantadosi CA. Biological chemistry of carbon monoxide. *Antioxid Redox Signal* 4: 259–270, 2002.

48. Pieper GM, Olds C, Hilton G, Lindholm PF, Adams MB, and Roza AM. Antioxidant treatment inhibits activation of myocardial nuclear factor κB and inhibits nitrosylation of myocardial heme protein in cardiac transplant rejection. *Antioxid Redox Signal* 3: 81–88, 2001.

49. Rizzo CJ. Further computational studies on the conformation of 1,5-dihydrolumiflavin. *Antioxid Redox Signal* 3: 737–746, 2001.

50. Ryter SW and Choi AM. Heme oxygenase-1: molecular mechanisms of gene expression in oxygen-related stress. *Antioxid Redox Signal* 4: 625–632, 2002.

51. Saybasili H, Yuksel M, Haklar G, and Yalcin AS. Effect of mitochondrial electron transport chain inhibitors on superoxide radical generation in rat hippocampal and striatal slices. *Antioxid Redox Signal* 3: 1099–1104, 2001.

52. Shibahara S, Kitamuro T, and Takahashi K. Heme degradation and human disease: diversity is the soul of life. *Antioxid Redox Signal* 4: 593–602, 2002.

53. Shimmura K and Yokota J. The OGG1 gene encodes a repair enzyme for oxidatively damaged DNA and is involved in human carcinogenesis. *Antioxid Redox Signal* 3: 597–609, 2001.

54. Soares MP, Usheva A, Brouard S, Berberat PO, Gunther L, Tobiasch E, and Bach FH. Modulation of endothelial cell apoptosis by heme oxygenase-1-derived carbon monoxide. *Antioxid Redox Signal* 4: 321–329, 2002.

55. Sparagna GC, Hickson-Bick DL, Buja LM, and McMillin JB. Fatty acid-induced apoptosis in neonatal cardiomyocytes: redox signaling. *Antioxid Redox Signal* 3: 71–79, 2001.

56. Swain SD, Rohn TT, and Quinn MT. Neutrophil priming in host defense: role of oxidants as priming agents. *Antioxid Redox Signal* 4: 69–83, 2002.

57. Szibor M, Richter C, and Ghafourifar P. Redox control of mitochondrial functions. *Antioxid Redox Signal* 3: 515–523, 2001.

58. Thiel VE and Audus KL. Nitric oxide and blood-brain barrier integrity. *Antioxid Redox Signal* 3: 273–278, 2001.

59. Tirosh O, Guo Q, Sen CK, and Packer L. Mitochondrial control of inducible nitric oxide production in stimulated RAW 264.7 macrophages. *Antioxid Redox Signal* 3: 711–719, 2001.

60. Toufektsian MC, Boucher FR, Tanguy S, Morel S, and de Leiris JG. Cardiac toxicity of singlet oxygen: implication in reperfusion injury. *Antioxid Redox Signal* 3: 63–69, 2001.

61. Tritto I and Ambrosio G. Role of oxidants in the signaling pathway of preconditioning [erratum appears in *Antioxid Redox Signal* 2001;3:937]. *Antioxid Redox Signal* 3: 3–10, 2001.

62. Tu SC. Reduced flavin: donor and acceptor enzymes and mechanisms of channeling. *Antioxid Redox Signal* 3: 881–897, 2001.

63. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, and Yodoi J. Redox control of cell death. *Antioxid Redox Signal* 4: 405–414, 2002.

64. Valdez LB and Boveris A. Nitric oxide and superoxide radical production by human mononuclear leukocytes. *Antioxid Redox Signal* 3: 505–513, 2001.

65. Wang Q and Doerschuk CM. The signaling pathways induced by neutrophil-endothelial cell adhesion. *Antioxid Redox Signal* 4: 39–47, 2002.

66. Webster KA, Prentice H, and Bishopric NH. Oxidation of zinc finger transcription factors: physiological consequences. *Antioxid Redox Signal* 3: 535–548, 2001.

67. Wink DA, Miranda KM, Espey MG, Pluta RM, Hewett SJ, Colton C, Vitek M, Feelisch M, and Grisham MB. Mechanisms of the antioxidant effects of nitric oxide. *Antioxid Redox Signal* 3: 203–213, 2001.

68. Wiseman S, Mulder T, and Rietveld A. Tea flavonoids: bioavailability *in vivo* and effects on cell signaling pathways *in vitro*. *Antioxid Redox Signal* 3: 1009–1021, 2001.

69. Xia G, Lara-Marquez M, Luquette MH, Glenn S, Haque A, and Besner GE. Heparin-binding EGF-like growth factor decreases inducible nitric oxide synthase and nitric oxide production after intestinal ischemia/reperfusion injury. *Antioxid Redox Signal* 3: 919–930, 2001.

70. Yamamura T, Otani H, Nakao Y, Hattori R, Osako M, Ima-mura H, and Das DK. Dual involvement of coenzyme Q10 in redox signaling and inhibition of death signaling in the rat heart mitochondria. *Antioxid Redox Signal* 3: 103–112, 2001.

71. Yang JQ, Li S, Huang Y, Zhang HJ, Domann FE, Buettner GR, and Oberley LW. V-Ha-Ras overexpression induces superoxide production and alters levels of primary antioxidant enzymes. *Antioxid Redox Signal* 3: 697–709, 2001.

72. Zhang J, Johnston G, Stebler B, and Keller ET. Hydrogen peroxide activates NF κ B and the interleukin-6 promoter through NF κ B-inducing kinase. *Antioxid Redox Signal* 3: 493–504, 2001.

73. Zhao Y, Kiningham KK, Lin SM, and St Clair DK. Overexpression of MnSOD protects murine fibrosarcoma cells (FSa-II) from apoptosis and promotes a differentiation program upon treatment with 5-azacytidine: involvement of MAPK and NF κ B pathways. *Antioxid Redox Signal* 3: 375–386, 2001.

74. Zweier JL, Fertmann J, and Wei G. Nitric oxide and peroxynitrite in postischemic myocardium. *Antioxid Redox Signal* 3: 11–22, 2001.